References

Abhyankar A., Copeland, L. S., & Wong, W. (1997). Uncovering nonlinear structure in real-time stock-market indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100. Journal of Business & Economic Statistics, 15, 1-14.

Aggarwal, R., & Demaskey, A. (1997). Using derivatives in major currencies for cross-hedging currency risks in Asian emerging markets. Journal ofFuture Markets, 17, 781-796.

Balvers, R. J., Cosimano, T. F., & McDonald, B. (1990). Predicting stock returns in an efficient market. Journal ofFinance, 55, 1109-1128.

Breen, W., Glosten, L. R., & Jagannathan, R. (1990). Predictable variations in stock index returns. Journal ofFinance, 44, 1177-1189.

Burrell, P. R., & Folarin, B. O. (1997). The impact of neural networks in finance. Neural Computing & Applications, 6, 193-200.

Campbell, J. (1987). Stock returns and the term structure. Journal ofFinancial Economics, 18, 373-399.

Chenoweth, T., & Obradovic, Z. (1996). A multi-component nonlinear prediction system for the S&P 500 Index. Neurocomputing, 10, 275-290.

Demuth, H., & Beale, M. (1998). NeuralNetwork Toolbox: Foruse with MATLAB (5th ed.). Natick, MA: The Math Works, Inc.

Desai, V. S., & Bharati, R. (1998). The efficiency of neural networks in predicting returns on stock and bond indices. Decision Sciences, 29, 405-425.

Elton, E. J., & Gruber, M. J. (1991). Modern Portfolio Theory and Investment Analysis (4th ed.). New York: John Wiley & Sons.

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal ofFinance, 25, 383-417.

Fama, E. F., & French, K. R. (1988). Dividend yields and expected stock returns. Journal of Financial Economics, 22, 3-25.

Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25, 23-49.

Fama, E. F., & Schwert, W. G. (1977). Asset returns and inflation. Journal ofFinancial Economics, 5, 115-146.

Ferson, W. (1989). Changes in expected security returns, risk, and the level of interest rates. Journal of Finance, 44, 1191-1217.

Gencay, R. (1998). Optimization of technical trading strategies and the profitability in securities markets. Economics Letters, 59, 249-254.

Han, J., & Micheline, K. (2000). Data mining: Concepts and techniques. San Francisco: Morgan Kaufmann.

Hill, T., O'Connor, M., & Remus, W. (1996). Neural network models for time series forecast. Management Science, 42, 1082-1092.

Jensen, M. (1978). Some anomalous evidence regarding market efficiency. Journal of Financial Economics, 6, 95-101.

Keim, D., & Stambaugh, R. (1986). Predicting returns in the stock and bond markets. Journal of Financial Economics, 17, 357-390.

Leitch, G., & Tanner, J. E. (1991). Economic forecast evaluation: Profits versus the conventional error measures. American Economic Review, 81, 580-590.

Leung, M. T., Daouk, H., & Chen, A. S. (2000). Forecasting stock indices: A comparison of classification and level estimation models. International Journal of Forecasting, 16, 173-190.

Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. Review of Financial Studies, 1, 41-66.

Maberly, E. D. (1986). The informational content of the interday price change with respect to stock index futures. Journal of Futures Markets, 6, 385-295.

Malliaris, M., & Salchenberger, L. (1993). A neural network model for estimating option prices. Journal of Applied Intelligence, 3, 193-206.

Mills, T. C. (1990). Non-linear time series models in economics. Journal of Economic Surveys, 5, 215-241.

Motiwalla, L., & Wahab, M. (2000). Predictable variation and profitable trading of US equities: A trading simulation using neural networks. Computer & Operations Research, 27, 1111-1129.

Nelson, M., Hill, T., Remus, W., & O'Connor, M. (1999). Time series forecasting using neural networks: Should the data be deseasonalized first? Journal of Forecasting, 18, 359-367.

Pantazopoulos, K. N., Tsoukalas, L. H., Bourbakis, N. G., Brun, M. J., & Houstis, E. N. (1998). Financial prediction and trading strategies using neurofuzzy approaches. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 28, 520-530.

Parzen, E. (1962). On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33, 1065-1076.

Pesaran, M. H., & Timmermann, A. (1992). A simple nonparametric test of predictive performance. Journal of Business & Economic Statistics, 10, 461-465.

Pesaran, M. H., & Timmermann, A. (1995). Predictability of stock returns: Robustness and economic significance. JournalofFinance, 50, 1201-1227.

Peterson, G. E., St Clair, D. C., Aylward, S. R., & Bond, W. E. (1995). Using Taguchi's method of experimental design to control errors in layered perceptrons. IEEE Transactions on Neural Networks, 6, 949-961.

Poddig, T., & Rehkugler, H. (1996). A world of integrated financial markets using artificial neural networks. Neurocomputing, 10, 251-273.

Priestley, M. B. (1988). Non-linear and non-stationary time series analysis. London: Academic Press.

Qi, M., & Maddala, G. S. (1999). Economic factors and the stock market: A new perspective. Journal of Forecasting, 18, 151-166.

Quinlan, J. (1993). C4.5: Programs for machine learning. San Francisco: Morgan Kaufmann.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings ofthe IEEE International Conference on Neural Networks (pp. 586-591). San Francisco.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: The MIT Press.

Schwert, W. (1990). Stock returns and real activity: A century of evidence. Journal of Finance, 45, 1237-1257.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3, 109-118.

Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural Networks, 2, 568-576.

Swales, G. S., & Yoon, Y. (1992). Applying artificial neural networks to investment analysis. Financial Analysts Journal, 48, 78-80.

Thawornwong, S., Enke, D., & Dagli, C. (2001, November). Neural network models for classifying the direction of excess stock return. Paper presented at the 32nd Annual Meeting of the Decision Sciences Institute, San Francisco, CA.

Vellido, A., Lisboa, P. J. G., & Vaughan, J. (1999). Neural networks in business: A survey of application (1992-1998). Expert Systems with Applications, 17, 51-70.

Wasserman, P. D. (1993). Advanced methods in neural computing. New York: Van Nostrand Reinhold.

Wood, D., & Dasgupta, B. (1996). Classifying trend movements in the MSCI U.S.A. capital market index — A comparison of regression, ARIMA, and neural network methods. Computers & Operations Research, 23, 611-622.

Wu, Y., & Zhang, H. (1997). Forward premiums as unbiased predictors of future currency depreciation: A non-parametric analysis. Journal of International Money and Finance, 16, 609-623.

Insiders Online Stocks Trading Tips

Insiders Online Stocks Trading Tips

We Are Not To Be Held Responsible If Your Online Trading Profits Start To Skyrocket. Always Been Interested In Online Trading? But Super-Confused And Not Sure Where To Even Start? Fret Not! Learning It Is A Cakewalk, Only If You Have The Right Guidance.

Get My Free Ebook


Post a comment