References

Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle River, NJ: Prentice-Hall Internal Inc.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366.

Jin, Y., Olhofer, M., & Sendhoff, B. (2000). On evolutionary optimization with approximate fitness functions. In Proceedings of Genetic and Evolutionary Computation Conference (pp. 786-792). Morgan Kaufmann.

Jin, Y., Olhofer, M., & Sendhoff, B. (2002). A framework for evolutionary optimization with approximate fitness functions. IEEE Transactions on Evolutionary Computation, 6(5), 481-494.

Liew, K. M., Ray, T., Tan, H., & Tan, M. J. (2002). Evolutionary optimization and use of neural network for optimum stamping process design for minimum springback. Transaction ASME Journal of Computing and Information Science in Engineering, 2, 38-44.

Poggio, T., & Girosi, F. (1989). Networks and the best approximation property. Biological Cybernetics, 63, 169-176.

Ratle, A. (1998). Accelerating the convergence of evolutionary algorithms by fitness landscape approximation. In A. Eiben, Th. B├Ąck, M. Schoenauer, & H.-P. Schwefel (Eds.), Parallel problem solving from nature (pp. 87-96). Berlin: Springer.

Ray, T., Gokarn, R. P., & Sha, O. P. (1996). Neural network applications in naval architecture and marine engineering. Artificial Intelligence in Engineering, 1, 213226.

Ray, T., Tai, K., & Seow, K. C. (2001). Multiobjective design optimization by an evolutionary algorithm. Engineering Optimization, 33, 399-424.

Richmond, O., & Davenpeck, M. L. (1962). A die profile for maximum efficiency in strip drawing. In Proceedings ofthe Fourth U.S. Congress. Applied Mechanics, ASME (pp. 1053).

Roy, S., Ghosh, S., & Shivpuri, R. (1996). Optimum design of process variables in multipass wire drawing by genetic algorithms. Journal of Manufacturing Science and Engineering, 118, 244-251.

Won, K. S., Ray, T., & Kang, T. (2003, December 6-8). A framework for optimization using approximate functions. In Proceedings of the IEEE Congress on Evolutionary Computing, Canberra, Australia.

Chapter XIV

0 0

Post a comment